

December | 2023

€dg∈ Lift Hairpin Anchors with feet

Compliance Document

Reid™ Edge Lift Hairpin Anchors with feet comply with NZ Good Practice Guidelines: safe work with precast concrete 2018

Reid's Edge Lift Hairpin Anchors with Feet eliminates the requirement of a shear bar and removes the risk of hanger bars being omitted.

They have been designed specifically for New Zealand conditions and to perform in New Zealand concrete panels reinforced with New Zealand reinforcing bar. This product meets the building code requirements for durability B2 Durability, B2.3.1

Figure I: Reid™ Edge Lift Hairpin Anchor with Feet range

Compliance Details & Performance Data

Table I: NZ GPG 2018 Compliance Details

Clause	Requirement	Compliant
6.6	The minimum FOS for general lifting needs to be 3 and for repetitive lifting needs to be 5.0.	\bigcirc
6.6	The design of the Lifting anchor shall include the ductile behavior and robustness of the anchor.	\bigcirc
10.11	Lifting clutches are to be made in accordance with a valid international standard or technical reference.	\bigcirc
10.11	Every item of lifting equipment should be clearly and permanently marked with its WLL. A unique numbering system to clearly identify individual items should be used.	\bigcirc
10.11	Lifting clutches are to be tested for loads in all directions and initially tested by the supplier to a factor of safety of 2.0	\bigcirc
10.11	Inspected at least every 12 months by a competent person, and a record kept of those inspections.	\bigcirc

Table 2: Performance Data

Panel			Max	Strip	pping	Pla	acement (W	/LL)															
Thickness	Part#	WLL	15 MPa	20MPa	25 MPa	30 MPa	40 MPa	Precast Panel Reinforcement															
(mm)		(tonne)	Tensile/Shear*	Tensile/Shear*	Tensile	Tensile	Tensile																
100			2.12/1.04	2.50/1.26	2.50	2.50	2.50	HD12 @ 250 CTS central															
120			2.44/1.32	2.50/1.55	2.50	2.50	2.50	HD12 @ 250 CTS central															
150	2HPAWFP	2.5	2.5	2.50/2.08	2.50/2.28	2.50	2.50	2.50	HD12 @ 150 CTS central														
175								2.50/2.47	2.50/2.50	2.50	2.50	2.50	HD16 @ 300 CTS central										
200																							
150			4.69/2.41	5.58/2.78	6.38	7.00	7.00	HD12 @ 150 CTS central															
175	7HPAWFP	7HPAWFP 7.0	5.25/2.83	6.24/3.42	7.00	7.00	7.00	HD16 @ 300 CTS central															
200				5.88/3.26	7.00/3.95	7.00	7.00	7.00	HD16 @ 300 CTS two layer														

Note: Data is based on concrete panel with vertical reinforcement detail as noted in table and satisfies the minimum requirement stipulated in clause 11.4.4.2 of NZS3101 2006 A3 for 500E grade. If reinforcement detail is less, contact your local Reid representative for advice.

The performance data in this table is based on the minimum edge distance and anchor spacing detailed in Table 4 of this document.

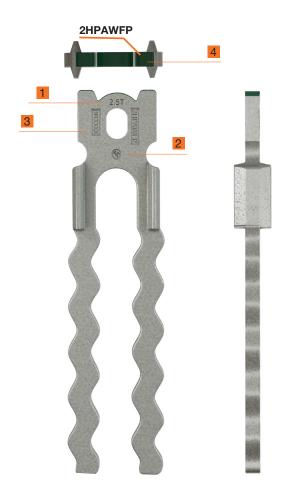
^{*} Shear data is based on avoiding hairline cracking around lifter during the stripping process.

The HPAWFP is available in two sizes, and is forged for added strength. Its thick, long hairpin legs provide secure lifting in both shear and tension applications, even in thin concrete panels (minimum panel thickness is 100mm). Hot dipped galvanised for corrosion protection, beneficial in thin panels where concrete cover is minimal.

Part Number & Pack Quantity's

Part No.	Description	Length (mm)	Pack Qty
2HPAWFP	2.5 tonne	264mm	1ea
7HPAWFP	7 tonne	343mm	1ea

Reid™ Hairpin Anchor markings



Reid name & symbol

Product Specifications (mm)

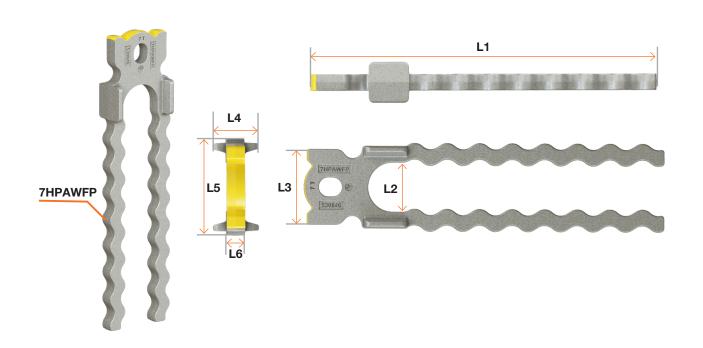


Table 3: HPAWFP - Edge Lift Hairpin Anchors with Feet Product Dimensions

Lood	Nominal Dimensions (mm)							
Load Group (t)	ы	L2	L3	L4	L5	L6		
2.5	264	28.5	54	30	66.5	10		
7.0	343	46.5	72	40	84.5	16		

Note: RCS reserve the right to change the above specifications.

The above Nominal dimensions are based on manufacture at 2019.

Product Specifications (mm)

Table 4a:

Minimum edge and spacing distances required to achieve performances in Table 2.

Minimum Edge and Spacing Limits						
Minimum Panel Thickness (mm)	Edge Distance e, (mm) Anchor Spacing a, (mm)		Embedment Depth h _{ef} (mm)			
2HPAWFP	400	800	269			
7HPAWFP	500	1000	346			

Note: For guide on reduced edge distance and anchor spacing, please refer to capacity reduction factors in Table 4b.

Table 4b:

Anchor Spacing and Edge Distance Capacity Reduction Factors to be applied on performance values in Table 2.

	Tensile Capacity Reduction Factor - φ_{n}				Shear Capacity Reduction Factor - $\phi_{f v}$			
Substrate	2HPAWFP		7HPAWFP		2HPAWFP		7HPAWFP	
Thickness	a (mm)	e (mm)	a (mm)	e (mm)	a (mm)	e (mm)	a (mm)	e (mm)
	400	200	500	250	400	200	500	250
120	0.42		N/A		1.0		N/A	
150, 175, 200	0.42		0.40		1.0		1.0	

Note: Apply Anchor Spacing and Edge Distance Capacity Reduction Factors as follows,

- Tensile Capacity Reduced $\,$ = Tensile Capacity (Table 2) x φ_{n}
- Shear Capacity Reduced = Shear Capacity (Table 2) x ϕ_v

Note: RCS reserve the right to change the above specifications.

Table 5:

Edge Lift Hairpin Anchors with Feet System

2.5 Tonne Edge Lift Hairpin Anchors with Feet System:

Part	Part No.	NZGPG2018 Compliant
Anchor	2HPAWFP	
Lifting Clutch	2ELALE 2ELALE	
Void Former	2ELARRF	

7 Tonne Edge Lift Hairpin Anchors with Feet System:

Part	Part No.	NZGPG2018 Compliant
Anchor	THPAWFP 7HPAWFP	
Lifting Clutch	WLL 76 7ELALE	
Void Former	7ELARRF	

Figure 2: 2HPAWFP Clutch, Anchor & Void former

Figure 3:
7HPAWFP
Clutch, Anchor & Void former

Features and Compliance

Edge Lift Hairpin Anchor Features

- Special feet forged onto the side of the anchor eliminates the requirement of installing shear bars.
- Clutches can be remote released as an added safety feature. * Anchors are forged from high strength steel for added strength and manufacturing accuracy.
- Hot dipped galvanised for corrosion resistance, beneficial in thin panels where concrete cover is minimal.
- Designed for use in panels as thin as 100mm (2HPAWFP).
- Simple and easy installation.
- Used in conjunction with the Reid Edge Lift Clutch (2ELALE, 7ELALE) and Recess Former (2ELARRF, 7ELARRF).
- The Reid's HPAWFP is instantly recognizable by the distinctive appearance of its long hairpin legs with head markers to identify its clutch rating. The head dimensions allow them to be used with the same clutches and recess formers as other Reid edge lift anchors.
- Coloured head allows for easy visual identification and appropriate clutch selection.

Edge Lift Hairpin Anchor Compliance

- Every individual item of lifting equipment should be clearly marked with its working load limit (WLL), the manufacturer's identifier, and a unique numbering system.
- Lifting anchors that are used for lifting and handling during all stages of manufacture, delivery and installation should be designed to a minimum safety factor of 3.0.
- As with lifting clutches, lifting anchors should be manufactured and tested in accordance with a valid international standard or technical reference.
- Development, production, testing, inspection and application of lifting anchors and lifting anchor systems should meet acceptably high and consistent standards to ensure that they are ft for purpose.

Installation support details

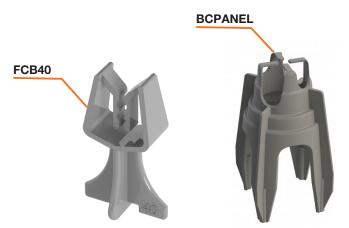


Table 6: Installation Support Details

Anchor		Panel	Ancho	r Chair	Mark Obain	Mesh Chair -
		Thickness (mm)	SS 2HPAWFP 7HPAWFP		Mesh Chair - Single	Double
2HP	AWFP	100			BCPANEL50/60	-
2HP	AWFP	120	FCB30	FCB25	BCPANEL50/60	-
2HPAWFP	7HPAWFP	150	FCB40	FCB40	BCPANEL65/75	CP25/40
2HPAWFP	7HPAWFP	175	FCB60	FCB50	CP85/110	CP25/40
2HPAWFP	7HPAWFP	200	FCB60	FCB60	CP85/110	CP25/40

Figure 4: Single Layer Reinforcing

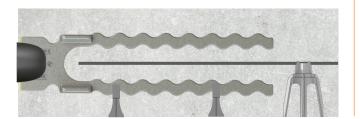
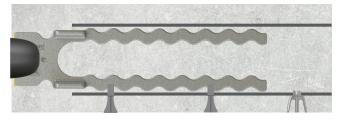
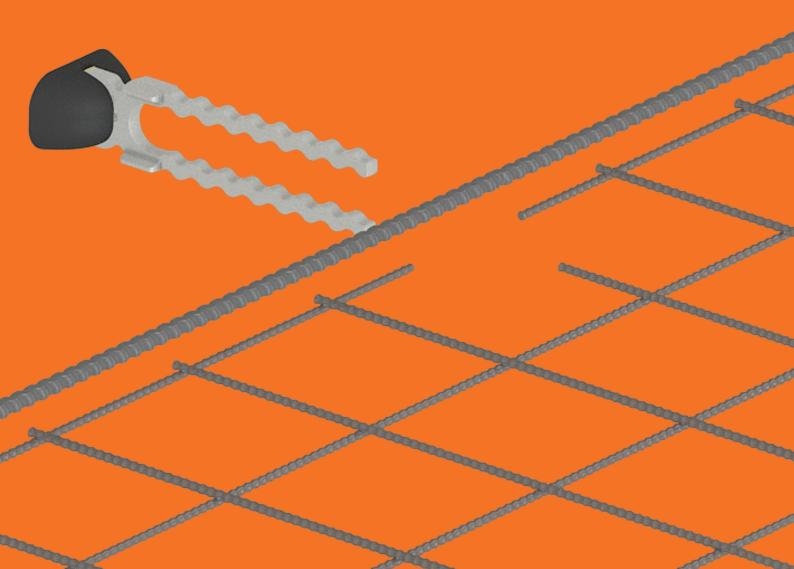




Figure 5: Double Layer Reinforcing

Terms and Conditions

Important Disclaimer: Any engineering information or advice ("Information") provided by Reid Construction Systems in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent permitted by law, Reid Construction Systems will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.

Customer Service

Reid[™] Australia

Tel: 1300 780 250

Email: sales@itwcsanz.com Web: www.reid.com.au

Reid™ New Zealand

Tel: 0800 88 22 12

Email: sales@ramsetreid.co.nz

Web: www.reids.co.nz

Reid™ Construction Systems (RCS) AUS: 1 Ramset Drive, Chirnside Park, Victoria, Australia, 3116 NZ: 23-29 Poland Road, Glenfield, Auckland 0632

Information in this document is correct at the time of printing. Readers should contact RCS or consult RCS detailed technical information to ensure product is suitable for intended use prior to purchase. ITW Australia Pty Ltd ABN 63 004 235 063 trading as RCS © copyright 2023. TM Trademarks of Cetram Pty. Ltd. Used under license by RCS

Important Disclaimer: Any engineering information or advice ("Information") provided by RCS in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent permitted by law, RCS will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.

None of the products listed in this document are subject to a warning or ban under the Building Act 2004.

